
1

Using Monte Carlo Tree Search Methods for Real-Time Champion

Recommendations in League of Legends

COMP 400 Research Project Report – James Ting

Abstract

League of Legends is the most popular e-sports game in the world. With many

champions to choose from, all with complex non-linear relationships, players can have

difficulty choosing a champion that will have the highest probability of winning. Any

potential champion recommendation system would have to provide accurate

recommendations before the champion selection period for the player has ended. Since

this period is approximately 30 seconds, the algorithm must be able to return a result

before the time has ended. This project explores the viability of using Monte Carlo Tree

Search (MCTS) for real-time recommendation systems of champions to users. This

project considers several techniques and reward functions and demonstrates MCTS with

a neural network reward function provides the best balance between time complexity,

speed, and prediction performance.

1. Introduction

League of Legends [1] is the most popular multiplayer online battle arena (MOBA) in the world with 8

million daily players [2]. In 2019, the League of Legends World Championship tournament brought in 44

million peak concurrent viewers [3], while the next most popular e-sports title, Defense of The Ancients 2

[4] had 1.9 million peak viewers during its world championship [5].

In each game of League of Legends (LoL), two teams of five players each fight to destroy a core structure

on the enemy base, called the Nexus, while defending their own. With 154 unique playable characters [6]

(called “champions”) to choose from, all of which have complex and non-linear relationships, players can

easily struggle to choose an appropriate champion for any situation. Due to the high number of champions,

there are approximately 3.86 × 1017 unique team combinations. Furthermore, each player has at most 30

seconds to select a champion, leaving limited time to make a choice. Currently, there is no such tool that

assists players in selecting champions depending on team composition and current selection. Players must

rely on their understanding of game mechanics, information available online, and champion performance

statistics to select an appropriate champion. However, players’ understanding of game mechanics may be

incomplete or incorrect, players have limited time to find information online, and individual champion

performance statistics aggregated by third party sites only provide average champion performance across

all encountered team compositions. The burden of selecting a champion can be especially heavy on new or

casual players, who lack the sufficient game knowledge to make an appropriate decision. New players may

not even be aware of the many third-party sites that aggregate information and help provide information to

players.

Monte Carlo Tree Search (MCTS) is a heuristic tree search method used to find optimal decisions for a

given domain. The algorithm takes random samples in the decision space and builds a search space based

on the results of the sample. MCTS has been a popular area of AI research, due in no small part to the

success of MCTS in the game Go, where human players had traditionally been far more advanced than

computer players. MCTS methods are useful in domains where the search space is very large, as it will

balance the exploration of new nodes and exploitation of existing nodes. Further, since MCTS converges

to minimax [7], MCTS is a suitable alternative for combinatorial games.

2

This project aims to demonstrate that MCTS is a viable algorithm to provide real-time champion

recommendations to players, based on the champions that have been selected thus far, that maximize the

probability of winning. The project will demonstrate that champion selection is a two-player zero-sum game

with perfect information. Any useful champion recommendation system must satisfy the following

requirements:

1) Recommend a champion that maximizes the probability of winning.

2) Provide a recommendation within the allotted time for players to select a champion.

Building such a recommendation system will benefit many players at all skill levels. Choosing the correct

champion will help experienced players progress to the higher ranks faster, professional players gain a

competitive edge over their opponents, and new players overcome the steep learning curve of the game.

First, we obtained a dataset of matches, including data about champions and winning teams. As a baseline

technique, the filtering technique counted win rates of each encountered team combination and searched

the dataset for similar teams to the provided team. To provide recommendations, the filtering technique

returns the combinations with the highest win rate. We then developed a MCTS algorithm that searches

through the tree representing the champion selection process and considered several reward functions for

the MCTS. We compare the latency, accuracy, and memory usage of each technique, and consider the

scalability of each technique. We also demonstrate that MCTS is more suitable for providing

recommendations for champions selection in a real-time system, with latencies in the order of a few

seconds.

2. Background

2.1 League of Legends

In this section, we provide an overview of the LoL gameplay and mechanics. Figure 1 presents a high-level

view of Summoner’s Rift, the main map in the ranked mode of LoL at the beginning of each match. At the

beginning of each match each player selects a champion, a playable in-game character, to play for the

duration of each match. In the map, there are three lanes, and each lane has three towers, destructible

structures that incurs large amounts of damage to enemies in the radius. To reach the Nexus, a team must

destroy the all the structures in at least one lane, while defending their own structures. The team that starts

in the bottom-left corner of the map is the blue team, and the team that starts in the top-right corner of the

map is the red team. Typically, four of the five players in each team will be in lanes, with the fifth player

being in the jungle out of the lanes. Players will have to face their opponent for the beginning of the game

and choosing the correct champion could help players gain a lead to win. Therefore, the selection of the

champion is crucial to gaining an edge over opponents.

3

Figure 1: A bird's eye view of Summoner's Rift, the main map in the Ranked Mode of League of Legends. [8]

At the beginning of each match, each team can discuss strategy and see what the other players have selected,

to build teams that synergize1 well. Before champion selection, each player can ban a single champion,

removing that champion from the option space. Players then choose champions in an alternating in a 1-2-

2-2-2-1 order, where the first team selects one champion, the second team selects two champions, and so

on until all players have selected, with the second team selecting the last champion. As a result of this pick

order, the search space of choices consists of pairs of champions. This adds complexity to the search and

requires more time to generate choices.

The importance of selecting champions in the game is a crucial phase of the game. Teams that select the

appropriate champions are more able to exploit the weaknesses of their opponents and leverage their skill

or knowledge of a certain champion to gain an advantage over the opponents. The importance of this portion

of the game is compounded by the large possibility space for team combinations. Given that each player

can choose from a pool of 154 champions [6], we can estimate the number of unique team combinations

to be approximately |𝑇| = (154
5

) × (149
5

) = 3.86 × 1017. Further, since champions have complex non-

linear synergies and counters2 with other champions, situation-appropriate champion selection can be a

challenging task for many players.

2.2 Methods

2.2.1 Recommendation systems

Recommending algorithms are well established in academic and industry applications, with various

techniques such as data mining, content-based, context-aware methods and more [9]. However, most

algorithms cannot not efficiently search such a large search space, and/or provide recommendations in real-

time, while taking into account input data that is also changing in real time. A common recommendation

algorithm is Apriori associative rules. Apriori association rules are common in e-commerce and multimedia

systems to recommend relevant items to users. The algorithm will search through the dataset and find the

1 “Synergy” is term used by players to refer to how well each champion works with other champions on their team.

Teams where champions enhance the strengths of other teammates, while also covering weaknesses synergize well,

whereas teams that do not synergize poorly.
2 A “counter pick” or “counter” is a term commonly used by players to refer to when an opponent selects a

champion that is particularly strong against a champion picked by the player or their teammates, typically due to the

design of the champion and the opponent champion.

4

most frequent item set. The algorithm relies on the fact that any item set that occurs frequently must also

have any subset occur at least as frequently [10]. Given a threshold 𝐶, the algorithm identifies the set of

items which are subsets of at least C sets in the database [11]. However, the Apriori algorithm is expensive

in terms of time and space complexity, with a time and space complexity of O(2𝑑+1), where d is the total

number of items in the dataset [12]. With such a large search space, this algorithm would be unlikely to

converge in time, and is therefore unsuited for this task. Furthermore, the algorithm can only find items that

tend to appear together, but not necessarily items (champions) that are appearing together and winning.

Such a model has the possibility of recommending a set of champions that appear frequently and have poor

probability of winning, resulting in popularity bias.

Two algorithms that are worth considering for a real-time recommendation system are collaborative

filtering, and Monte Carlo Tree Search. Collaborative filtering techniques are common in e-commerce as

well as multimedia for recommendation systems, and are able to provide recommendations to players that

maximize enjoyment [13]. Monte Carlo Tree Search, however, is an algorithm primarily concerned with

finding optimal decisions in a decision space and is able to provide updated decisions as more data is

provided. Since the champion selection is a decision, this technique is useful to find the optimal champion

choice in a given selection state.

2.2.2 Collaborative filtering

The principal goal of collaborative filtering is to suggest items that a user will rate highly, based on past

items that the user rated highly and the ratings of other users. In essence the algorithm recommends items

that are typically purchased or highly rated by similar users. There are two principal types of collaborative

filtering techniques, user-based and item-based algorithms [14]. Since the aim of the project is to build a

user-agnostic tool, the focus will be put on item-based models. This family of algorithms consists of two

main steps [15]:

• Similarity computation: Compute the similarity of two items using a similarity function.

• Prediction computation: Using the most similar items, look at the target user ratings and use a

technique to obtain predictions.

To compute the similarity between two items, several techniques are available. Methods such as cosine-

based similarity, correlation-based similarity and adjusted-cosine similarity are common techniques [15].

Since cosine similarity is a relatively simple calculation, it has low latency and memory usage, which are

crucial in a real-time system. Given two items, they can be thought of vectors in a m-dimensional space,

i,  j  ∈ ℝ𝑚. The cosine similarity function defined as:

sim(𝑖, 𝑗) =
𝑖  ∙ 𝑗

||𝑖|| ∗ ||𝑗||

where the numerator is the dot product of i,  j. Items which are identical will have a similarity score of one,

and orthogonal items will have a similarity score of 0.

Next, for the prediction computation, the algorithm can then take the set of most similar items, and then use

techniques such as a weighted sum or regression to output items that are similar to the user’s past choices,

and the choices of other likeminded users.

Using this technique for a champion recommendation system, the algorithm will select the champion

combinations in the dataset that are most similar to the provided champion state using the cosine-based

similarity. The algorithm will return the top 𝑘 recommendations, sorted by win rate.

5

2.2.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a family of heuristic search algorithms that employ multiple Monte

Carlo simulations within decision trees. In general, all MCTS build decision trees in an incremental and

asymmetric manner, and then on each iteration of the algorithm, a Tree Policy estimates which currently

leads to the most optimal decision. The tree will be built incrementally by adding a single child node at

each iteration of the MCTS algorithm. The tree is built asymmetrically because the algorithm selects a node

that is worth exploring exclusively using the Tree Policy. A good Tree Policy should balance exploration

of new nodes, and the exploitation of explored nodes. The algorithm then runs a domain-specific reward

function and updates the tree based on the result of the reward function [16]. A domain specific reward

function for champion selection would be a reward function that takes in a game state and then determines

which team would win.

Figure 2: One iteration of the general MCTS technique [16].

Any MCTS algorithm will, at a high-level, follow these steps, illustrated in Figure 2:

1. Selection: The algorithm selects an interesting and expandable node. A node is expandable if it is

not a terminal state, and at least one child node has not been expanded. The Tree Policy will

determine which nodes are interesting and worth exploring further.

2. Expansion: The algorithm selects a random choice or action from the selected node, and then adds

a new child node to the tree.

3. Simulation: Run a reward function on the expanded node using the Default Policy to estimate the

outcome of the decision.

4. Backpropagation: Backpropagate the outcome (reward) up the tree to update the values of parent

nodes.

Traditionally, MCTS have excelled in the domain of games. Go has an exceptionally difficult challenge for

artificial intelligence. Due to the high branching factor, deep decision tree, and a lack of a known reliable

heuristic for nonterminal positions, Go has a domain where human players have remained well ahead. In

October 2015, Google DeepMind used a MCTS algorithm to play an unhandicapped version of 19x19 Go,

beating the European world champion [17]. It is because of this that MCTS methods have seen a growing

level of interest, with applications in other domains such as Settlers of Catan, automated complex material

design, poker, and many more [18-20].

Upper Confidence applied to Trees (UCT) is a common MCTS algorithm [16] that approximates the game-

theoretic value of possible actions from the current state. The pseudocode in Figure 3 shows a variation of

6

UCT for two-player, zero-sum games with alternating moves [16]. The general UCT algorithm is similar,

however this variation for this project uses a different backpropagation function that negates the reward at

each step. The general UCT simply propagates the reward throughout the entire tree.

Figure 3: Pseudocode for a UCT algorithm for a combinatorial game. Adapted from [16]

Figure 3 shows the pseudocode for a UCT algorithm. Each node n of the decision tree for any MCTS

algorithm contains four attributes: N(𝑛) is the number of times that a node has been visited by the algorithm,

Q(𝑛) is the total reward of all playouts containing the action represented by that node, 𝑆(𝑛) is the state of

the current node, and A(𝑛) is the set of possible actions from the current node’s state. In general, N(𝑛) is a

non-negative integer and Q(𝑛) is a real-valued vector. In the case for this project, Q(𝑛) will be a non-

negative integer and will be the number of times that this state resulted in a blue team victory.

The return value of the entire algorithm will be the best child of the root node, which is the action from the

current state that will give the highest reward. In general, the algorithm could also be made to return the

7

most visited child node [16], however in this project’s implementation, it recommends champions that

maximize the probability of winning, and so it selects the action that will give the highest reward.

UCT is a Tree Policy that aims to balance the exploration-exploitation dilemma. This Tree Policy has

several advantages, which make it well suited for this task. It is simple and efficient to calculate and

guaranteed to be within a constant factor of the best possible bound on the growth of regret [16]. The UCT

equation is given by:

UCT= 𝑋�̅� + 2𝐶𝑃√
2 ln 𝑛

𝑛𝑗

where 𝑛 is the number of times the current node has been visited and 𝑛𝑗 is the number of times the j-th child

has been visited, 𝐶𝑃 > 0 is a constant and 𝑋�̅� is a value in the range [0,1]. For this project, 𝑋�̅� will be the

estimated blue team win rate of the state represented by that node, or more formally: 𝑋�̅� =
𝑄(𝑛𝑗)

𝑁(𝑛𝑗)
. For

example, consider three nodes, one parent node and two children and suppose we are making

recommendations for the blue team. Let each node be a tuple 𝑁𝑖 = (𝑞𝑖, 𝑛𝑖, 𝐴𝑖 , 𝑆𝑖) where 𝑞𝑖 is the number of

times that node led to a blue team victory, 𝑛𝑖 is the number of times each node has been visited, 𝐴𝑖 is the

set of actions, and 𝑆𝑖 is the state of the node. Suppose the parent node has values 𝑁𝑝 = (4,6, 𝐴𝑝, 𝑆𝑝) and

the children nodes have values 𝑁1 = (2,3, 𝐴1, 𝑆1) and 𝑁1 = (1,3, 𝐴1, 𝑆1). Suppose that 𝐶𝑃 =
1

√2
 . The UCT

for 𝑁1 would be
2

3
+ 2 (

1

√2
) √

2 ln 6

3
= 2.212 and the UCT for 𝑁2 would be

1

3
+ 2 (

1

√2
) √

2 ln 6

3
= 1.878. We

can see that based on the UCT, 𝑁1 is currently more worth exploring. Intuitively, this is correct as we can

see that 𝑁1 has a higher estimated blue team win rate than 𝑁2 and is therefore more worth exploring.

Adjusting the 𝐶𝑃 exploration term affects the amount of exploration by the algorithm. For reward function

rewards of between [0, 1], a value of 𝐶𝑃 =
1

√2
 has been shown to satisfy the Hoeffding inequality [21].

Therefore, 𝐶𝑃 =
1

√2
 was selected for the implementation of the UCT in this project.

MCTS methods have found their niche in domains where the search space is large, and where algorithms

like minimax would take too long to converge [7]. With the space of champions being so large, MCTS is a

possible strategy to algorithmically make champion recommendations in real time.

3. Contribution

3.1 Data Collection

The data for this project is collected from the Riot Games API, which provides data about matches and

players in League of Legends. We built a NodeJS script to repeatedly issue requests to the API. We selected

NodeJS for the scrip due to its ease of use when working with asynchronous tasks, such as issuing requests.

On startup, the scraper reads the match that was last added to the dataset. Then the script selects a random

participant in that match, enqueues all ranked matches played by that player. The script only collected data

from ranked matches to ensure players would take the game seriously and reduce the effects of “trolling”.

The players that were targeted were players of average rank, with the assumption that a player’s rank is

correlated with their skill, to build a more generalizable model for the algorithm to be able to predict the

outcomes of the most matches. The script will issue a request once every 2.5 seconds by default, which

would reduce the chance of a “Too Many Requests” errors. The scraper collected data from a total of

1,357,379 matches from January 25th, 2021 to April 5th, 2021.

8

Once the NodeJS script had collected initial dataset, a Python script removed duplicate matches and filtered

the remaining matches to extract the champion and outcome information. Since there is no upper bound on

the length of the game and each match data object contains a timeline of player performance, each match

response had a varying amount of information [22]. The NodeJS flattens each response to store the data in

a row of a .csv file. We then selected most frequent match data length, to ensure commonality between all

datapoints. The selected row length is 1150.

To build the dataset about the champions, another Python script selected the columns that contained the

participant champion data, with the first five champions being the champion keys of the blue team, and the

next five champions being the champion keys for the red team. For example, a row in the dataset is:

(57, 44, 124, 3, 21, 72, 151, 1, 59, 132, 1). For this combination, the blue team selected champions with

keys (57, 44, 124, 3, 21) and the red team selected champions with keys (72, 151, 1, 59,132) and this game

resulted in a blue team victory. Within the scope of this paper, champion key refers to an integer in the

range [1, 𝑁] where 𝑁 is the number of distinct champions in the game, and champion ID refers to a non-

negative integer the Riot API uses to identify champions. The Riot API docs contains a JSON file that is

used to convert between the champion key and champion ID [23]. The final column contains a binary value

that records whether blue team won the game. A value of 1 means a blue victory, and a value of 0 means

red victory. The final dataset contained champion data for 984,976 unique matches.

3.2 Filtering for Team Combinations

For this task, since players cannot change their champions after selection, any useful recommendation must

have the current state of the selection as a subset. The key difference between traditional collaborative

filtering methods and the method implemented for this project is that traditional methods do not guarantee

this constraint [15].

In the model implemented for this project, on startup, each combination of teams is recorded in a hash map,

mapping to the win-rate of that combination. For the similarity calculation, the model searches the datasets

for all possible combinations that could result from the provided team. More formally, let 𝓍 be a set of

length less than 5, where each element in the set is a champion key. The algorithm then searches the dataset

to find all combinations 𝒞 such that 𝓍 ⊆ 𝒞.

For the prediction calculation, the combinations that satisfied the subset condition were sorted by win rate.

Then the algorithm returns the top k combinations with the highest win rate, where k is the number of

recommendations requested by the user. To find the top recommendation, a linear scan is sufficient.

Figure 4 gives the pseudocode for the filtering technique. The algorithm creates a HashMap for each team’s

recommendations, then for each combination in the dataset, it determines if the input team is a subset of the

combination. It then sorts each recommendation HashMap and returns the top k recommendations.

9

Figure 4: Pseudocode for filtering technique

3.3 Applying UCT to Champion Selection

For the UCT algorithm to be applicable, champion selection must be defined as a zero-sum two player

combinatorial game. Chen et al. demonstrated that in DOTA 2, hero selection satisfies the requirements to

be a combinatorial game [24]. This requires considering each team, composed of multiple players, as a

single game-theoretic player and each game-theoretic player will always know what the other has selected

and therefore has perfect information. Further, since only one team can win, the game is a zero-sum game.

Since the champion selection phase of DOTA and League are nearly identical and differ only in the

champions themselves, champion selection in League of Legends also satisfies the requirements to be a

zero-sum two player combinatorial game. This will assume that all players on both teams share a goal:

selecting champions with the highest probability of winning. Further, while different individuals

collectively form each team, we can view the players in each team as a collective single game-theoretic

player. Without loss of generality, let blue team be the team that selects first. Formally, champion selection

is a combinatorial game with the following components [16]:

• 𝑆 ⊂ ℤ𝑛: the set of game states, where 𝑛 is the number of unique champions. Each 𝑠 ∈ 𝑆 is a 𝑛-

dimensional tuple where each 𝑖-th index encodes the selection of 𝑖-th champion. The possible

selection values are:

10

𝑠𝑖 = {
1 𝑖-th champion selected by blue team

−1 𝑖-th champion selected by red team

0 otherwise

The start state 𝑠0 is a zero vector.

• 𝑆𝑇 ⊆ 𝑆: the set of terminal states. A terminal state for champion selection is a state where each

team has selected 10 champions. Each final state should contain exactly five indexes that are equal

to 1 and exactly five indexes that are equal to −1. The rest of the indexes will be zero.

• 𝑛 = 2: the number of players in the game.

• 𝐴: the set of actions. Each action is the player selecting a champion.

• 𝑓 ∶ 𝑆 × 𝐴 → 𝑆: the state transition function. This function, given a champion selection and a

starting state, will give the next state as a result.

• 𝑅: 𝑆 → {0,1}: the reward function. This function, given a state, returns the outcome of that state. 0

is a red victory and 1 is a blue victory. The reward function is only defined on the set of terminal

states.

• 𝜌 ∶ 𝑆 → (Blue, Red) the player about to act in each state.

With these components, champion selection satisfies the conditions of a two-player, zero-sum,

deterministic, sequential discrete game with perfect information. In other words, champion selection is a

combinatorial game. Using these components, champion selection can be viewed as a combinatorial game,

UCT can be applied to find optimal strategies. The pseudocode implemented for this project is given in

Figure 3. No large modifications are necessary to apply UCT to champion selection, with the components

described above.

3.4 Reward function selection.

A crucial component of the MCTS methods is the reward function. For any application of MCTS, a domain

specific reward function simulates the playouts of the game and determines the rewards. A good reward

function is crucial to the performance of MCTS because it provides the updates for the heuristic to search

the tree. This project considers the following reward functions: random choice, majority class, cosine

similarity, and neural networks. For all reward functions, the function takes a state and reward function

metadata as input and will return 1 if the blue team should win, and 0 if the red won the simulation.

3.4.1 Random choice reward function.

The random choice reward function is quick and simple reward function. It is considered for this project as

a lower bound on the latency and memory usage for a reward function. It works by simply using the built-

in random function from standard Python module random. Random choice will return a 1 if the result from

the call to random.random() is greater than 0.5, and 0 otherwise. It represents a random guess, where for

each match, the function guesses which team will win with equal probability and then returns the result

without considering the current game state. This computation is fast and runs in constant time relative to

the size of the dataset. Further, it requires relatively little memory, the reward function is potentially scalable

for a real-time system. While this calculation is very fast, it is relatively meaningless when it comes to

making recommendations, as it does not recommendations based on the state. Furthermore, when the

recommendation is made, the recommendation would be the result of the action that happened to win the

most times in over most simulations, but not necessarily the recommendation with the highest probability

of winning.

11

3.4.2 Majority class reward function.

The majority class reward function is another quick and simple reward function. Majority class methods

are a useful baseline for classification systems, since they guarantee an accuracy equal to the proportion of

elements in the majority class. Since each team is equally likely to win, we would expect the majority class

to have an accuracy no greater than 50%. When configured to use this reward function, the UCT program

will first load the win rate file, and then compute the win rate. The algorithm passes the computed win rate

to the reward function as an argument. Then, if the computed win rate is greater than 0.5, it will return 1,

representing a blue team victory. It will return a 0 otherwise, representing a red team victory. This reward

function also runs in constant time and space with respect to the size of the dataset. It would also be highly

scalable for a real-time system. However, it also suffers from the similar issues as the random choice, where

the function does not consider the current state. This may result in the MCTS not searching a path that

would have a higher probability of winning.

3.4.3 Cosine similarity reward function.

For a function that takes considerations based on the state, a cosine similarity function was used, similar to

the kind described by [15]. This function takes as input the state of the game, and a HashMap mapping to

team combinations and whether that game state led to a win or a loss. It checks for an identical copy of the

state, and then if such a state exists, it will return the outcome of that game based on the dataset. If no such

state exists, then the function will search the dataset and select the most similar state. It will then return the

outcome of that state. The cosine function does consider the current state of the game and is able to make

predictions on states that are similar combinations in the dataset. However, this algorithm is linear with

respect to the size of the dataset and takes significantly longer than the random choice and majority class

reward function.

3.4.4 Neural network reward function.

For this reward function, UCT uses a neural network trained on the dataset to predict the outcomes of the

state. In a similar project aimed at recommending heroes in DOTA 2, Chen et al., considered several reward

functions, including the majority class, logistic regression, gradient boosted decision tree, and neural

networks [24], and found the neural network had the highest accuracy. Therefore, we selected a neural

network reward function for the implementation of MCTS for this project.

At the start of the recommendation system, the program loads the neural network from the specified

location. The program then initializes a new instance of the model using the neural network binary file. The

UCT program then passes the network object as an argument for the Tree Policy for the program, and then

the Tree Policy performs a forward pass on the network object. Initially, had a 2-node output layer, returning

a vector 𝑥 ∈ ℝ2 and then the program would return the index of the maximum element of 𝑥. However, due

to poor validation accuracy, we changed the final output layer to a single node with the sigmoid activation

function, representing the probability that the blue team will win. We can see that an output layer with a

sigmoid activation function is intuitively correct since, without loss of generality, the probability that blue

team wins is the complement of the probability that red team wins. In game-theoretic terms, the game of

champion selection is a zero-sum game.

Design and training of the neural network developed using PyTorch 1.7.1. The network has one hidden

layer, with a configurable number of hidden units. The activation function of the nodes in the hidden layer

that is ReLU, and dropout was used to reduce overfitting. We selected the Adam optimizer [25] and the

Binary Cross Entropy with Logistic Loss, for better numerical stability [26]. This loss function is a

categorical loss function for binary classification and is defined as:

12

𝐿(𝑦) = 𝜎(−(𝑦 log(𝑝(𝑦)) + (1 − 𝑦) log(1 − 𝑝(𝑦)))

where 𝜎 is the sigmoid function, 𝑦 is the class predicted by the network, and 𝑝(𝑦) is the class prior of class

𝑦 in the training set. The network takes as input a vector 𝑠 ∈ 𝑆 representing the game state, and outputs a

real number 𝑥 ∈ [0,1]. This Tree Policy then interprets this real number as a blue team victory if greater

than 0.5, and a red team victory otherwise.

4. Experimental Evaluation

A real-time recommendation system should satisfy the following requirements:

1) Provide accurate recommendations with latencies on the order of seconds, to ensure real-time

usability and usefulness.

2) Have constant time complexity with respect to the size of a dataset, to ensure scalability for a large

system.

These experiments will evaluate the mean recommendation win rate, latencies and memory usages for each

method and reward function. The time and space complexity of each is also considered. The code for all

the techniques in this project is available at: https://github.com/jamesbting/COMP-400-Research-Project.

4.1 Neural Network Performance

We empirically selected the hyperparameters to optimize the validation accuracy without overfitting. The

training script includes options to configure the hyperparameters. It was found that with a hidden layer size

of 256, learning rate of 0.0005, batch size of 75000, and dropout rate of 0.5. The dataset was randomly split

with an 8:2 ratio for the training and validation set. The accuracy, loss, validation accuracy, and validation

loss graphs are included in Figure 4.

Figure 5: Graphs for accuracy, loss, validation accuracy and validation loss. The x-axis for all graphs is the time since

training began.

https://github.com/jamesbting/COMP-400-Research-Project

13

While the validation accuracy is relatively low, the model can outperform a naïve model that simply guesses

the blue team will win each time. Furthermore, while training the network, we observed that as the size of

the training set increased, the validation accuracy tended increased. Therefore, it is possible that the dataset

does not contain enough datapoints to learn the true distribution of champions and will likely benefit from

a larger dataset. This is likely due to the large search space and popularity bias among players. A million

unique team combinations would be approximately 2.52 × 10−12 % of the total search space, and therefore

cannot capture the entire breadth of the relationships between champions. Adding information about

champions that have been banned could slightly reduce the search space and improve recommendations.

Further, since players do not select champions uniformly, the dataset is more likely to contain champions

that players select more frequently. As a result, the neural network has the potential to have a higher

validation accuracy.

4.2 Model performance

To evaluate the different methods, prediction performance, memory usage and latency are compared. Each

system used the time and psuitl module to measure and record the time to make a prediction and the peak

memory usage, respectively. For each algorithm and every reward function, except cosine similarity, the

algorithm made 100 predictions, and recorded the time and peak memory usage. For cosine similarity, tests

with only 15 predictions with 10 iterations of UCT for the sake of time. The computer conducting all

experiments is equipped with an AMD Ryzen 5 3600 3.6 GHz CPU. The input for all tests is [121, 24, 18]

for the blue team and [11, 26] for the red team. Since red team currently has less picks, the recommendation

system would be making recommendations for the red team. Without loss of generality, all systems can

make recommendations for either team.

To measure the accuracy of each model, the trained neural network computes the probability that, for a

given recommendation, the blue team will win. Then, a Python script reads each recommendation, uses the

neural network computes the win rate for each recommendation, and computes the mean win rate for each

system.

System Mean Blue Team Win Rate

Filtering 0.5047

MCTS – Random Choice 0.5130

MCTS – Majority Class 0.5122

MCTS – Cosine Similarity 0.5108

MCTS – Neural Network 0.5067
Table 1: Mean predicted win rate for the blue team for each recommendation system – lower is better.

Since the experiment aims to maximize the red team win-rate, we can see that the models with the best

performance are the filtering and the MCTS using the Neural network reward function. Those systems will

be more likely to produce favorable results for the users. The random choice, majority class and cosine

similarity reward functions for the neural network preformed the worst. For the random choice and majority

class, this would be easy to see since both reward functions do not consider the game state. The cosine

similarity however, while improves on the random and majority class, still performs worse than the filtering

and neural network. A possible reason for this could be the lack of iterations for MCTS, and therefore the

algorithm is unable to sufficiently search the possibilities for a winning combination. For a real-time system

to be able to provide recommendations to many users at a large scale, it must also be able to provide

recommendations quickly without consuming too much memory.

The time and memory averages for the filtering technique are shown below:

14

Test Average Latency (s) 99th Percentile

Latency (s)

Average Peak

Memory Usage

(MB)

Mean Blue Team

Win Rate

1 1.584 1.600 1018.85 0.5047

2 1.586 1.608 1018.98 0.5047

3 1.581 1.599 1018.89 0.5407
Table 2: Results from filtering, 1 recommendation, 100 experiments

We can see that the mean blue team win rate is consistent across the tests is because, for a fixed dataset and

request, the algorithm is deterministic, and will always give the same recommendations for each request.

While this filtering technique is relatively fast, and able to deliver a prediction in under the five second

benchmark, algorithm depends on searching the dataset for suitable matches. Further, the algorithm can

recommend multiple options, something that MCTS will require more iterations to match. However, this

comes at the cost. The filtering technique has time and space complexity 𝑂(𝑛), where 𝑛 is the number of

matches in the dataset and is therefore unsuited for deployment in a real time system designed for end-

users. In such a system, it will likely require on the order of billions of matches for a representative subset

of the sample space. Therefore, collaborative filtering will likely struggle on a larger dataset, and is poorly

suited for a real-time system.

Within the context of the MCTS tests, an iteration is one cycle of selection, expansion, simulation, and

backpropagation. The time and memory averages for each reward function (random choice, majority class,

cosine similarity, and neural network) of the MCTS are shown below:

Test Average

Latency (s)

99th Percentile

Latency (s)

Average Peak

Memory Usage

(MB)

Number of nodes

created per

experiment

Mean Blue

Team Win

Rate

1 0.1054 0.1349 235.21 1002 0.5131

2 0.1054 0.1440 235.15 1002 0.5135

3 0.1062 0.1399 234.93 1002 0.5125
Table 3: Results from UCT with random winner, 1000 iterations, 100 experiments

Test Average

Latency (s)

99th Percentile

Latency (s)

Average Peak

Memory Usage

(MB)

Number of nodes

created per

experiment

Mean Blue

Team Win

Rate

1 0.1050 0.1359 235.16 1002 0.5120

2 0.1044 0.1359 238.16 1002 0.5123

3 0.0940 0.1359 237.66 1002 0.5123
Table 4: Results from UCT with majority class, 1000 iterations, 100 experiments

Test Average

Latency (s)

99th Percentile

Latency (s)

Average Peak

Memory Usage

(MB)

Number of nodes

created per

experiment

Mean Blue

Team Win

Rate

1 211.05 211.32 318.47 17 0.5108

2 209.08 210.67 318.22 17 0.5136

3 211.31 215.50 318.49 17 0.5148
Table 5: Results from UCT with cosine similarity, 15 iterations, 10 experiments

Test Average

Latency (s)

99th Percentile

Latency (s)

Average Peak

Memory Usage

(MB)

Number of nodes

created per

experiment

Mean Blue

Team Win

Rate

1 0.2551 0.2900 238.34 1002 0.5069

15

2 0.2538 0.2889 238.18 1002 0.5068

3 0.2530 0.2829 238.26 1002 0.5064
Table 6: Results from UCT with neural network, 1000 iterations, 100 experiments

In the initial design of the UCT, each game state was a vector 𝑠 ∈ ℤ154. Such a vector can be thought of

as the “long game state”. However, the memory usage and time to compute was significantly higher. Since

such a vector would be mostly sparse, the game state can also be represented as a vector 𝑠 ∈ ℤ10 where the

𝑘-th index is a positive integer representing the champion selected. The first five indexes are for the blue

team and the next five indexes represent the champions for the red team. These two representations are

equivalent, and therefore the implementation of UCT uses the lower dimensional game states, which greatly

reduced the latency and memory usage of the program.

For the random winner and majority class, to make 100 predictions with 1000 iterations of UCT is,

unsurprisingly, faster than the other reward functions. However, neither of these reward functions consider

the provided state. Therefore, the recommendation is unlikely to be any better than a random choice of

champion or a choice by a knowledgeable player. Furthermore, other systems have better accuracy of

predictions, and therefore, despite the scalability of each reward function, other recommendation systems

can provide more accurate recommendations.

The cosine similarity and the neural network are more interesting cases to examine. The cosine similarity,

while lower than the neural network in memory usage, takes significantly longer than the neural network,

even while running far fewer simulations. Since allowing UCT to perform more iterations tends to improve

the result [16], this reward function is also unlikely to give results that are accurate. The high latency of the

cosine reward function, which in turn reduces the number of iterations of UCT and hurts the accuracy,

means this recommendation system is especially poorly suited for a real-time system. This should not be a

surprise however, as the time complexity of UCT with the cosine reward function is 𝑂(𝑛𝑘), where 𝑛 is the

size of the dataset and 𝑘 is the number of iterations, where as a UCT with a constant time reward function

would be 𝑂(𝑘). Furthermore, the cosine similarity also tends to have worse prediction accuracy, when

compared to the other systems considered in this project. Therefore, the cosine similarity will be unfit for

a real-time system.

The neural network, with a prediction time of approximately two seconds, strikes a balance of accuracy and

latency. It had the second-best prediction and speed performance, while having a roughly constant time

complexity. Further, because the reward function is a neural network, the validation accuracy of the network

collecting more data and refining the model hyperparameters would improve the validation accuracy, and

as a result, the UCT algorithm will be able to improve the recommendations. As a result, developing such

a neural network and dataset, and then deploying such a system would be a research area worth exploring.

A disadvantage of this model is that the neural network struggles to learn when the champion state is a

vector 𝑠 ∈ ℤ10. This is likely due to the non-linear relationship between the champion keys and their

performance in the game. Therefore, before making a simulation with the neural network, the game state is

to a long game state and then the long games state is the input for the neural network. The cause of the

higher latency of the neural network when compared to the random and majority class is likely a mix of the

state conversion cost and the added cost of performing a forward pass through the neural network. Training

a neural network to learn the reduced game state would further improve the performance and memory usage

of UCT. Future works could examine building a larger dataset and increasing the accuracy of the neural

network.

A useful real-time recommendation system must provide accurate recommendations with low latency,

while being scalable to a much larger dataset. As demonstrated by the experiment, we find that collaborative

16

filtering has the best mean recommendation win rates while having reasonable latencies and memory usage.

However, collaborative filtering is linear with respect to the size of the dataset, and to improve the accuracy,

a larger dataset is necessary. For the different reward functions used in the UCT algorithm, random choice

and majority class were found to be highly scalable and fast but have lower accuracy. Cosine similarity

reward function satisfied none of the requirements, and the neural network was fast, scalable, and accurate.

The neural network also has the potential to improve the accuracy and provide better recommendations

without increasing latency.

5. Conclusion

In this project, the viability of Monte Carlo Tree Search as a real-time recommendation system for

champions in the game League of Legends. By viewing champion selection as a combinatorial game, and

applying MCTS methods, the model can search an exceedingly large search space of possible team

combinations and make recommendations about which champions to play. Of the systems and reward

functions used, filtering and UCT with a neural network had the most accurate predictions, while being

computationally in expensive. UCT with the random choice and majority class had worse predictions, and

the UCT with cosine similarity is computationally very expensive. This project demonstrated that using a

UCT algorithm with a neural network reward function satisfies the requirements for a large-scale, real-time

recommendation system available to end users.

One drawback of such technique is the lack of player information data. Since most players only play a

subset of champions, the algorithm may recommend to a player a champion they have never played before.

While on average, selecting this champion may provide a better win rate, the player using such a

recommender system may not be as skilled, and result in a loss. Expanding the game states to include player

specific information is possible, however will come at the cost of greatly increasing the amount of data

required to be stored at each game state and potentially increasing latency.

There are many future research directions for this project. Building a dataset on high-ranking players could

potentially lead to better accuracy of the neural network, since these players typically have high skill on

many champions and a far more advanced knowledge of the game. A neural network may be able to learn

better on such a dataset and be able to deliver better predictions. However, that recommendation system

would be less applicable to the general population of players. Growing the size of the dataset to contain

billions of matches could also help the neural network train and allow the neural network to learn on a

larger dataset. Modifying the MCTS to use player specific information will allow the network to accept

that information to make predictions, however it will greatly increase the amount of data stored at each

game state, since the tree will now need to contain information about each players’ skill on each champion

for all the players in the game, and any other data about the players that the neural network could potentially

use to make predictions. Another improvement could be to parallelize UCT, thereby increasing the number

of iterations, or reducing the latency.

Acknowledgments. I would like to thank my mentor, Oana Balmau, for providing feedback at every step

of the project, especially during the early steps of the project and the suggestions on the final report.

17

Bibliography

[1] I. Riot Games. "League of Legends." https://na.leagueoflegends.com/en-us/ (accessed.
[2] K. Webb, "More than 100 million people watched the 'League of Legends' World Championship,

cementing its place as the most popular esport," in Business Insider, ed, 2019.
[3] L. Staff. "2019 World Championship Hits Record Viewership." Riot Games, Inc.

https://nexus.leagueoflegends.com/en-us/2019/12/2019-world-championship-hits-record-
viewership/ (accessed 08-04-2021.

[4] V. Corporation. "DOTA 2." https://www.dota2.com/home (accessed.
[5] S. Yakimenko. "Viewership results of The International 2019." Esports Charts.

https://escharts.com/blog/results-the-international-2019 (accessed 04-08-2021.
[6] I. Riot Games. "Choose your Champion." https://na.leagueoflegends.com/en-us/champions/

(accessed March 27th 2021, 2021).
[7] B. Bouzy, "Old-fashioned Computer Go vs Monte-Carlo Go," in IEEE Symposium on

Computational Intelligence and Games, Hilton Hawaiian Village, Honolulu, Hawaii, April 1-5
2007. [Online]. Available:
https://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf. [Online].
Available: https://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf

[8] L. o. L. Wiki, "Summoner's Rift," ed: MOBAFire.
[9] A. G. Guy Shani, "Evaluating Recommender Systems," Recommender Systems Handbook, 2010,

doi: https://doi.org/10.1007/978-0-387-85820-3_8.
[10] T. I. Rakesh Agrawal, Arun Swami, "Mining Association Rules between Sets of Items in Large

Databas," SIGMOD '93: Proceedings of the 1993 ACM SIGMOD Interational Conference on
Managment of Data, 1993, doi: https://doi.org/10.1145/170035.170072.

[11] N. K. G. Abhishek Saxena, "Frequent Item Set Based Recommendation using Apriori,"
International Journal Of Science, Engineering and Technology Research, vol. 4, no. 5, pp. 1609 -
1612, 2015. [Online]. Available: http://ijsetr.org/wp-content/uploads/2015/05/IJSETR-VOL-4-
ISSUE-5-1609-1612.pdf.

[12] H. H. Imam Tahyudin, Hidetaka Nanbo, "Time Complexity Of A Priori And Evolutionary Algorithm
For Numerical Association Rule Mining Optimization," International Journal Of Science,
Engineering and Technology Research, vol. 8, no. 11, pp. 483 - 485, 2019. [Online]. Available:
https://repository.unmul.ac.id/bitstream/handle/123456789/3898/5.%20IJSTRvol8i11-Time-
Complexity-Of-A-Priori-And-Evolutionary-Algorithm-For-Numerical-Association-Rule-Mining-
Optimization.pdf?sequence=1&isAllowed=y.

[13] D. S. Y. Tiffany D. Do, Salaman Anwer, Seong Ioi Wang, "Using Collaborative Filtering to
Recommend Champoins in League of Legends," in 2020 IEEE Conference on Games, Osaka,
Japan, 2020: IEEE, pp. 650-653, doi: 10.1109/CoG47356.2020.9231735. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9231735

[14] D. H. John S. Breese, Carl Kadie, "Empirical analysis of predictive algorithms for collaborative
filtering," UAI'98: Proceedings of the Fourteenth conference on Uncertainty in Artifical
Intelligence, pp. 43 - 52, 1998. [Online]. Available:
https://dl.acm.org/doi/10.5555/2074094.2074100.

[15] G. K. Badrul Sarwar, Joseph Konstan, John Riedl, "Item-Based Collaborative Filtering
Recommendation Algorithms," WWW '01: Proceedings of the 10th Interational Conferance on
World Wide Web, pp. 285 - 295, 2001. [Online]. Available:
https://dl.acm.org/doi/10.1145/371920.372071.

[16] E. P. Cameron B. Brone, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, Simon Colton, "A Survey of

https://na.leagueoflegends.com/en-us/
https://nexus.leagueoflegends.com/en-us/2019/12/2019-world-championship-hits-record-viewership/
https://nexus.leagueoflegends.com/en-us/2019/12/2019-world-championship-hits-record-viewership/
https://www.dota2.com/home
https://escharts.com/blog/results-the-international-2019
https://na.leagueoflegends.com/en-us/champions/
https://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf
https://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1145/170035.170072
http://ijsetr.org/wp-content/uploads/2015/05/IJSETR-VOL-4-ISSUE-5-1609-1612.pdf
http://ijsetr.org/wp-content/uploads/2015/05/IJSETR-VOL-4-ISSUE-5-1609-1612.pdf
https://repository.unmul.ac.id/bitstream/handle/123456789/3898/5.%20IJSTRvol8i11-Time-Complexity-Of-A-Priori-And-Evolutionary-Algorithm-For-Numerical-Association-Rule-Mining-Optimization.pdf?sequence=1&isAllowed=y
https://repository.unmul.ac.id/bitstream/handle/123456789/3898/5.%20IJSTRvol8i11-Time-Complexity-Of-A-Priori-And-Evolutionary-Algorithm-For-Numerical-Association-Rule-Mining-Optimization.pdf?sequence=1&isAllowed=y
https://repository.unmul.ac.id/bitstream/handle/123456789/3898/5.%20IJSTRvol8i11-Time-Complexity-Of-A-Priori-And-Evolutionary-Algorithm-For-Numerical-Association-Rule-Mining-Optimization.pdf?sequence=1&isAllowed=y
https://ieeexplore.ieee.org/abstract/document/9231735
https://dl.acm.org/doi/10.5555/2074094.2074100
https://dl.acm.org/doi/10.1145/371920.372071

18

Monte Carlo Tree Search Methods," IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE
AND AI IN GAMES, vol. 4, no. 1, 2012.

[17] A. H. David Silver, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, Demis Hassabis, "Mastering the game of
Go with deep neural networks and tree search," Nature, vol. 529, pp. 484-489, 2016, doi:
https://doi.org/10.1038/nature16961.

[18] G. C. István Szita, Pieter Spronck, "Monte-Carlo Tree Search in Settlers of Catan," ACG 2009:
Advances in Computer Games, pp. 21-32, 2010. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-12993-3_3.

[19] S. J. Thaer M. Dieb, Kazuki Yoshizoe, Zhufeng Hou, Junichiro Shiomi, Koji Tsuda, "MDTS:
automatic complex materials design using Monte Carlo tree search," Science and Technology of
Advanced Materials, vol. 18, no. 1, pp. 498 - 503, 2017, doi: 10.1080/14686996.2017.1344083.

[20] K. D. Guy Van den Broeck, Jan Ramon, "Monte-Carlo Tree Search in Poker Using Expected
Reward Distributions," ACML 2009: Advances in Machine Learning, vol. 5828, pp. 367 - 381,
2009. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-642-05224-8_28.

[21] C. S. a. Levente Kocsis, Jan Willemson, "Improved Monte-Carlo Search," 2006. [Online].
Available: http://old.sztaki.hu/~szcsaba/papers/cg06-ext.pdf.

[22] I. Riot Games. "Riot Developer Portal - Match." https://developer.riotgames.com/apis#match-
v4/GET_getMatch (accessed.

[23] I. Riot Games. "League of Legends API Documentation."
https://developer.riotgames.com/docs/lol (accessed 2021).

[24] T.-H. D. N. Zhengxing Chen, Yuyu Xu, Christopher Amato, Seth Cooper, Yizhou Sun, Magy Seif El-
Nasr, "The Art of Drafting: A Team-Oriented Hero Recommendation System for Multiplayer
Online Battle Arena Games," RecSys '18: Proceedings of the 12th ACM Conference on
Recommender Systems, pp. 200 - 208, 2018, doi: https://doi.org/10.1145/3240323.3240345.

[25] J. G. Sebastian Bock, Matin Weiß, "An improvement of the convergence proof of the ADAM-
Optimizer," presented at the OTH CLUSTERKONFERENZ 27 April 2018, 2018. [Online]. Available:
https://arxiv.org/abs/1804.10587.

[26] PyTorch. "BCEWITHLOGITSLOSS."
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html (accessed April
3rd, 2021.

https://doi.org/10.1038/nature16961
https://link.springer.com/chapter/10.1007/978-3-642-12993-3_3
https://link.springer.com/chapter/10.1007/978-3-642-05224-8_28
http://old.sztaki.hu/~szcsaba/papers/cg06-ext.pdf
https://developer.riotgames.com/apis#match-v4/GET_getMatch
https://developer.riotgames.com/apis#match-v4/GET_getMatch
https://developer.riotgames.com/docs/lol
https://doi.org/10.1145/3240323.3240345
https://arxiv.org/abs/1804.10587
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

